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ABSTRACT
Data classification within the network brings significant benefits in
reaction time, servers offload and power efficiency. Still, only very
simple models were mapped to the network. In-network classifi-
cation will be useful only if we manage to map complex machine
learning models to network devices. We present Planter, an algo-
rithm for an efficient mapping of ensemble models, such as XGBoost
and Random Forest, to programmable switches. By overlapping
trees within match-action tables, Planter maps ensemble models
to programmable switches with high accuracy and low resource
overhead.

CCS CONCEPTS
•Networks→ In-networkprocessing;Programmable networks;
•Computingmethodologies→Machine learning; Ensemble
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1 INTRODUCTION
The Internet is playing an increasingly dominant role in our lives.
With more and more connected IoT devices, the amount of data
flowing within the Internet is rapidly growing [8]. The traditional
model of using back-end servers to process the traffic imposes a
further burden on the network.

In-network computing provides the means to mitigate the prob-
lem, processing the datawithin network devices, as it moves through
the network. In-network computing offers reduced processing delay,
improved processing efficiency, and reduced network load [15].

Machine learning algorithms have long been applied to network
data, e.g., for traffic classification [13] and anomaly detection [7].
However, doing so within the network is challenging. Not only
network devices are resource constrained, but their architecture
doesn’t lend itself easily to machine learning scale and complexity.
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Ensemble models, such as Random Forest [2] and XGBoost [4],
are widely used in machine learning, as the combination of multiple
learning models allows to improve prediction results [5, 17]. As
decision trees can fit within network devices [16], the challenge
becomes fitting tree-based ensemble models within the resource
constrains of a switch.

This work presents Planter, an algorithm that efficiently maps
tree-based ensemblemodels to commercially available programmable
switches. It supports a variety of ensemble models such as Random
Forest, XGBoost, and Isolation Forest. Planter has a low resource
overhead, and minimal loss of accuracy (less than 2%) compared
with fully-grown ensemble models running on a server.

2 MAPPING DECISION TREES
Running classification based on a decision tree or an ensemble
model within a PISA-style switch [1] means not only mapping the
model to a match-action architecture, but also attending to three
constraints: 1) limited amount of memory [10] 2) limited number
of stages and 3) limited mathematical operations.

One approach to mapping tree-based models to switches, used
by SwitchTree [11] and pForest [3], uses a match-action stage for
each level in the tree. As shown in Figure 1(a), The number of stages
matches the depth of a tree. At each stage, the previous decision
and branch ID decide the next branch ID or the classification result.
However, these approaches consume a large number of logic op-
erations and stages. Furthermore, each tree in an ensemble model
is implemented independently, limiting the number of trees per
pipeline, as a pipeline has only 12-20 stages [9].
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Figure 1: The difference in mapping a decision tree to a
match-action pipeline between (a) SwitchTree & pForest and
(b) IIsy & Planter.

In IIsy [16], we proposed a different approach to mapping de-
cision trees, which encodes the model using a table per feature,
coding the decision into the tree level, as shown in Figure 1(b).
Planter extends this idea, offering an algorithm that can both map
ensemble models to switches, and do so efficiently. In Planter, the
number of stages is independent of a tree’s depth.
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Figure 2: Workflow of the Planter algorithm.

3 ENSEMBLE MODELS IN PLANTER
Planter maps ensemble models to programmable switches by over-
lapping trees encoding within feature tables, and using a single
table per tree to decode a tree’s decision. In this section we explain
the algorithm.

In Planter, a forest model consisting of 𝑁 trees with𝑀 features
requires𝑀+𝑁 match-action (M/A) tables. The first𝑀 tables, named
feature tables, use the value of a feature as the key. The action of
the feature table is divided into multiple fields, each with a code
indicating the respective branches taken in each of the tree models.
The following 𝑁 tables, named code tables, use as the key to the
table the concatenated code (per tree) of all features. The resulting
action is the leaf node (decision) of the tree. There is an alternative
form of the Planter algorithm which requires𝑀 + 1 tables, with a
single code table for all trees. This alternative is feasible only when
the number of entries in the code table is small enough.

Figure 2 shows a simple example of mapping an ensemble model
using two trees based on the𝑀 + 𝑁 format of the algorithm, with
arrows indicating Planter’s workflow. Grey boxes illustrate M/A
tables contents. Planter starts by iterating on all trees. In the ex-
ample, 𝑛 = 1, meaning that the table entries are indicated for the
second tree. The algorithm goes through all the branches of the 𝑛𝑡ℎ
tree and records the condition values of each split in the tree. These
splits are then used to generate feature tables. Once all feature
tables have been generated, the algorithm goes through all the leaf
nodes, and records all the branches taken along the path. This is
used to generate a code table for the 𝑛𝑡ℎ tree, encoding the path
to the leaf node by combining the codes from the feature tables
and finding their respective leaf in the code table. When all 𝑛 trees
have been processed, Planter collects all code tables and merges
the feature tables of each tree model. These tables are then loaded
to the network device.

Different types of ensemble models are differentiated in Planter
by the action of the code table and final decision method. Ran-
dom forest uses the resulting label from each code table as a vote,
and counts the votes from all the trees to obtain the final label. In
XGBoost, the code table stores the (normalized) probability of a
selected leaf, sums per class the probabilities from all trees, and
sets the label by comparing classes’ summed probabilities. For both
models, decision confidence can be included in the code table. Isola-
tion Forest stores the depth of the leaf node in the code table, adds
the depth from all tree models, and decides on a class based on the
total depth.

4 PRELIMINARY EVALUATION
The Planter algorithm is implemented in Python. The machine
learning training is done using Scikit-learn [14] and P4 is used for
the switch data plane. The generated program runs on 64 × 100𝐺𝐸
Intel Tofino platform. Planter is evaluated using two datasets: a tra-
ditional machine learning dataset, Iris [6], and a network intrusion
detection dataset [12].

Our preliminary evaluation uses 4 features and 3 trees for the
IRIS dataset (due to the small size of the dataset), and 5 features
and 6 trees for anomaly detection, with a depth of 4, implementing
Random Forest and XGBoost. Note that these results use the number
of trees sufficient for classification, and not the maximum number
possible. For example, in the anomaly detection use case, we can
fit 7 trees with (up to) 1000 leaves. A baseline model running on a
host is fully grown (i.e. order of 100 trees and 10,000 leaves).

All the generated models consume less than 7% of the memory
compared with Intel’s reference design, switch.p4, and have a negli-
gible effect on the latency of a switch pipeline — significantly lower
than the reference design latency. The programs run at line rate,
evaluated using DPDK’s pktgen and both synthetic and anomaly
detection traces [12]. As Planter tables can share stages with stan-
dard network functionality tables, this may be transparent to the
user. The accuracy loss compared with models running on a server
is less than 2%, and similarly for metrics such as F1.

5 CONCLUSION AND FUTUREWORK
We present Planter, an algorithm for efficient mapping of ensemble
models to programmable data planes. Planter increases the number
of trees that can be mapped to a network device by overlapping
trees within match-action tables.

Planter’s development is currently focused on the optimization of
the algorithm: minimizing the number of entries in code tables and
maximizing the number of trees that can fit a pipeline. Future work
will explore more use cases, both network-focused and traditional
machine learning use cases. It will further explore if ensemble
models can or should be split between multiple switches.
Acknowledgements We acknowledge support from VMware.
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